Binance Square

AA__A

image
Creatore verificato
ARPA Network (ARPA) is a decentralized secure computation network built to improve the fairness, security, and privacy of blockchains.
0 Seguiti
1.7K+ Follower
6.4K+ Mi piace
502 Condivisioni
Post
·
--
Visualizza traduzione
From Black-Box Models to Trustworthy Predictions: a Beginner’s Guide to ZK-SNARKs For…From Black-Box Models to Trustworthy Predictions: A Beginner’s Guide to ZK-SNARKs for Privacy-Preserving AI Artificial intelligence has become the backbone of modern technology, making critical decisions in areas like healthcare, finance, and even autonomous driving. However, most users never see how these models work; we simply receive a prediction or classification from what is often called a black-box model. While this arrangement is convenient, it raises an important question: How do we know these predictions are accurate if we can’t see inside the box? The Challenge of Black-Box AI AI models, especially deep neural networks, typically operate with tens of millions (or even billions) of parameters. Companies have strong incentives to keep these parameters secret for competitive advantage. Meanwhile, users — and sometimes regulators — wish to ensure the model’s correctness and trustworthiness. For instance, a financial firm implementing a black-box credit-scoring system may wonder if it genuinely achieves the advertised accuracy, or if it is simply a cheaper, less robust model passed off as cutting-edge. This situation creates a tension between transparency and confidentiality. Users crave evidence that the service is accurate, ethical, and secure, yet full transparency could expose highly sensitive information about the model’s proprietary design or compromise user data. Bridging this gap calls for a mechanism that proves correctness without revealing sensitive internals. Enter ZK-SNARKs ZK-SNARKs (Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge) offer a powerful cryptographic method to verify a statement’s truth without exposing any details about the statement itself. In the realm of AI: Model Verification: A service provider (the “prover”) can assure a user (the “verifier”) that a prediction or accuracy claim is correct. Privacy Preservation: Neither the model’s private parameters nor the user’s sensitive data ever need to be revealed. How does this work under the hood? Arithmetization: The AI model’s computations — ranging from simple matrix multiplications to non-linear layers — are converted into polynomial equations or “circuits.” Proof Construction: Using a ZK-SNARK protocol (e.g., Groth16, Plonk, Halo2), the prover generates a succinct cryptographic proof that these equations hold for a particular input and output. Verification: The verifier can quickly check this proof (often in constant or logarithmic time relative to the model’s size) to confirm correctness. If the proof checks out, the user knows the model’s output or claimed accuracy is valid, all without gaining access to any private internals. Use Case: Verifying Medical Diagnoses Consider a sophisticated AI platform that analyzes high-resolution medical images to detect certain diseases. The platform might claim a 95% detection accuracy rate, but how can hospitals or patients confirm such a claim without accessing the model’s deeply guarded parameters? Without ZK-SNARKs: The platform either exposes model details (risking intellectual property theft) or simply expects trust from users. With ZK-SNARKs: The platform periodically or dynamically generates proofs indicating that predictions align with a model of known accuracy. Users verify these proofs without learning the model’s internal architecture or any sensitive patient data. This approach crucially preserves privacy and IP value while enabling trust-based verification. Patients gain confidence that the system truly meets the stated performance standards, and platform providers keep their proprietary methods secret. Deeper Insights into Circuit Generation Translating an AI model into a form suitable for ZK-SNARK verification generally involves decomposing the model into additions, multiplications, and other arithmetic-friendly operations. For instance, convolutional layers — common in image recognition tasks — can be expressed as polynomial constraints over matrix elements. Activation functions (like ReLU) may require specialized “lookup table” constraints in protocols such as Halo2 or custom gadgets to ensure they can be verified without incurring enormous proof overhead. While generating these circuits can be computationally expensive, ongoing research (including work on verifiable machine learning) focuses on reducing proof generation time by leveraging more advanced proof systems and hardware optimizations. In practice, frameworks like Circom, EZKL, and ZKML significantly ease the process, allowing data scientists to convert models into verifiable circuits with less manual overhead. Challenges and Future Outlook Despite the clear advantages, several hurdles remain on the path to widespread adoption of privacy-preserving AI. For one, generating proofs for extremely large models can still be resource-intensive, although recent breakthroughs in proof engineering and GPU acceleration are gradually alleviating these bottlenecks. Moreover, organizations must become comfortable with the idea of cryptographic proofs as part of their AI deployment pipelines, which may require new skill sets and operational procedures. Nevertheless, as privacy regulations tighten and public awareness of data misuse grows, it is increasingly likely that trustable, private AI will become a market differentiator. With ZK-SNARKs at the forefront, service providers can maintain competitive secrecy while offering verified evidence of AI performance. As research continues to refine these cryptographic protocols, the prospect of large-scale, privacy-preserving AI systems moves ever closer. About ARPA ARPA Network (ARPA) is a decentralized, secure computation network built to improve the fairness, security, and privacy of blockchains. The ARPA threshold BLS signature network serves as the infrastructure for a verifiable Random Number Generator (RNG), secure wallet, cross-chain bridge, and decentralized custody across multiple blockchains. ARPA was previously known as ARPA Chain, a privacy-preserving Multi-party Computation (MPC) network founded in 2018. ARPA Mainnet has completed over 224,000 computation tasks in the past years. Our experience in MPC and other cryptography laid the foundation for our innovative threshold BLS signature schemes (TSS-BLS) system design and led us to today’s ARPA Network. Randcast, a verifiable Random Number Generator (RNG), is the first application that leverages ARPA as infrastructure. Randcast offers a cryptographically generated random source with superior security and low cost compared to other solutions. Metaverse, game, lottery, NFT minting and whitelisting, key generation, and blockchain validator task distribution can benefit from Randcast’s tamper-proof randomness. For more information about ARPA, please contact us at contact@arpanetwork.io. Learn about ARPA’s recent official news: Twitter: @arpaofficial Medium: https://medium.com/@arpa Discord: https://dsc.gg/arpa-network Telegram (English): https://t.me/arpa_community Telegram (Turkish): https://t.me/Arpa_Turkey Telegram (Korean): https://t.me/ARPA_Korea Reddit: https://www.reddit.com/r/arpachain/

From Black-Box Models to Trustworthy Predictions: a Beginner’s Guide to ZK-SNARKs For…

From Black-Box Models to Trustworthy Predictions: A Beginner’s Guide to ZK-SNARKs for Privacy-Preserving AI

Artificial intelligence has become the backbone of modern technology, making critical decisions in areas like healthcare, finance, and even autonomous driving. However, most users never see how these models work; we simply receive a prediction or classification from what is often called a black-box model. While this arrangement is convenient, it raises an important question: How do we know these predictions are accurate if we can’t see inside the box?

The Challenge of Black-Box AI

AI models, especially deep neural networks, typically operate with tens of millions (or even billions) of parameters. Companies have strong incentives to keep these parameters secret for competitive advantage. Meanwhile, users — and sometimes regulators — wish to ensure the model’s correctness and trustworthiness. For instance, a financial firm implementing a black-box credit-scoring system may wonder if it genuinely achieves the advertised accuracy, or if it is simply a cheaper, less robust model passed off as cutting-edge.

This situation creates a tension between transparency and confidentiality. Users crave evidence that the service is accurate, ethical, and secure, yet full transparency could expose highly sensitive information about the model’s proprietary design or compromise user data. Bridging this gap calls for a mechanism that proves correctness without revealing sensitive internals.

Enter ZK-SNARKs

ZK-SNARKs (Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge) offer a powerful cryptographic method to verify a statement’s truth without exposing any details about the statement itself. In the realm of AI:

Model Verification: A service provider (the “prover”) can assure a user (the “verifier”) that a prediction or accuracy claim is correct.

Privacy Preservation: Neither the model’s private parameters nor the user’s sensitive data ever need to be revealed.

How does this work under the hood?

Arithmetization: The AI model’s computations — ranging from simple matrix multiplications to non-linear layers — are converted into polynomial equations or “circuits.”

Proof Construction: Using a ZK-SNARK protocol (e.g., Groth16, Plonk, Halo2), the prover generates a succinct cryptographic proof that these equations hold for a particular input and output.

Verification: The verifier can quickly check this proof (often in constant or logarithmic time relative to the model’s size) to confirm correctness. If the proof checks out, the user knows the model’s output or claimed accuracy is valid, all without gaining access to any private internals.

Use Case: Verifying Medical Diagnoses

Consider a sophisticated AI platform that analyzes high-resolution medical images to detect certain diseases. The platform might claim a 95% detection accuracy rate, but how can hospitals or patients confirm such a claim without accessing the model’s deeply guarded parameters?

Without ZK-SNARKs: The platform either exposes model details (risking intellectual property theft) or simply expects trust from users.

With ZK-SNARKs: The platform periodically or dynamically generates proofs indicating that predictions align with a model of known accuracy. Users verify these proofs without learning the model’s internal architecture or any sensitive patient data.

This approach crucially preserves privacy and IP value while enabling trust-based verification. Patients gain confidence that the system truly meets the stated performance standards, and platform providers keep their proprietary methods secret.

Deeper Insights into Circuit Generation

Translating an AI model into a form suitable for ZK-SNARK verification generally involves decomposing the model into additions, multiplications, and other arithmetic-friendly operations. For instance, convolutional layers — common in image recognition tasks — can be expressed as polynomial constraints over matrix elements. Activation functions (like ReLU) may require specialized “lookup table” constraints in protocols such as Halo2 or custom gadgets to ensure they can be verified without incurring enormous proof overhead.

While generating these circuits can be computationally expensive, ongoing research (including work on verifiable machine learning) focuses on reducing proof generation time by leveraging more advanced proof systems and hardware optimizations. In practice, frameworks like Circom, EZKL, and ZKML significantly ease the process, allowing data scientists to convert models into verifiable circuits with less manual overhead.

Challenges and Future Outlook

Despite the clear advantages, several hurdles remain on the path to widespread adoption of privacy-preserving AI. For one, generating proofs for extremely large models can still be resource-intensive, although recent breakthroughs in proof engineering and GPU acceleration are gradually alleviating these bottlenecks. Moreover, organizations must become comfortable with the idea of cryptographic proofs as part of their AI deployment pipelines, which may require new skill sets and operational procedures.

Nevertheless, as privacy regulations tighten and public awareness of data misuse grows, it is increasingly likely that trustable, private AI will become a market differentiator. With ZK-SNARKs at the forefront, service providers can maintain competitive secrecy while offering verified evidence of AI performance. As research continues to refine these cryptographic protocols, the prospect of large-scale, privacy-preserving AI systems moves ever closer.

About ARPA

ARPA Network (ARPA) is a decentralized, secure computation network built to improve the fairness, security, and privacy of blockchains. The ARPA threshold BLS signature network serves as the infrastructure for a verifiable Random Number Generator (RNG), secure wallet, cross-chain bridge, and decentralized custody across multiple blockchains.

ARPA was previously known as ARPA Chain, a privacy-preserving Multi-party Computation (MPC) network founded in 2018. ARPA Mainnet has completed over 224,000 computation tasks in the past years. Our experience in MPC and other cryptography laid the foundation for our innovative threshold BLS signature schemes (TSS-BLS) system design and led us to today’s ARPA Network.

Randcast, a verifiable Random Number Generator (RNG), is the first application that leverages ARPA as infrastructure. Randcast offers a cryptographically generated random source with superior security and low cost compared to other solutions. Metaverse, game, lottery, NFT minting and whitelisting, key generation, and blockchain validator task distribution can benefit from Randcast’s tamper-proof randomness.

For more information about ARPA, please contact us at contact@arpanetwork.io.

Learn about ARPA’s recent official news:

Twitter: @arpaofficial

Medium: https://medium.com/@arpa

Discord: https://dsc.gg/arpa-network

Telegram (English): https://t.me/arpa_community

Telegram (Turkish): https://t.me/Arpa_Turkey

Telegram (Korean): https://t.me/ARPA_Korea

Reddit: https://www.reddit.com/r/arpachain/
·
--
La casualità non significa caos, ma rappresenta responsabilità. ARPA rende la casualità verificabile, non indovinabile. 🎲🔐 https://t.co/xYbH3oUC17 https://t.co/Opq6ZTrJbc https://twitter.com/arpaofficial/status/2021016765703110950
La casualità non significa caos, ma rappresenta responsabilità.

ARPA rende la casualità verificabile, non indovinabile. 🎲🔐

https://t.co/xYbH3oUC17 https://t.co/Opq6ZTrJbc https://twitter.com/arpaofficial/status/2021016765703110950
·
--
Come le Zero-Knowledge Proofs stanno rendendo gli agenti AI più intelligenti ed efficienti: il futuro di...Come le Zero-Knowledge Proofs stanno rendendo gli agenti AI più intelligenti ed efficienti: il futuro del calcolo collaborativo La tecnologia dell'intelligenza artificiale (AI) è sempre più presente ovunque. È in cima ai risultati dei motori di ricerca, viene utilizzata per scrivere piccole righe di codice, può condurre ricerche e citare fonti, e alcune persone stanno persino cercando di capire come metterla nella tua lavastoviglie. Sebbene la necessità di avere l'AI nella tua lavastoviglie possa essere dibattuta, una cosa che non può essere messa in discussione è che utilizzare questa tanta potenza di calcolo ha costi definiti.

Come le Zero-Knowledge Proofs stanno rendendo gli agenti AI più intelligenti ed efficienti: il futuro di...

Come le Zero-Knowledge Proofs stanno rendendo gli agenti AI più intelligenti ed efficienti: il futuro del calcolo collaborativo

La tecnologia dell'intelligenza artificiale (AI) è sempre più presente ovunque. È in cima ai risultati dei motori di ricerca, viene utilizzata per scrivere piccole righe di codice, può condurre ricerche e citare fonti, e alcune persone stanno persino cercando di capire come metterla nella tua lavastoviglie. Sebbene la necessità di avere l'AI nella tua lavastoviglie possa essere dibattuta, una cosa che non può essere messa in discussione è che utilizzare questa tanta potenza di calcolo ha costi definiti.
·
--
Visualizza traduzione
Do what you will with this information https://t.co/gpzGSiSNsD https://twitter.com/arpaofficial/status/2020649344857424153
Do what you will with this information https://t.co/gpzGSiSNsD https://twitter.com/arpaofficial/status/2020649344857424153
·
--
Visualizza traduzione
🔐 New PR is live on @InnoTechToday! It highlights why the next era of privacy isn’t just about hiding data but also about proving correctness without exposing secrets. At ARPA Network, we’ve been building toward that future with privacy-preserving + verifiable computation for https://twitter.com/arpaofficial/status/2019782634071605662
🔐 New PR is live on @InnoTechToday! It highlights why the next era of privacy isn’t just about hiding data but also about proving correctness without exposing secrets.

At ARPA Network, we’ve been building toward that future with privacy-preserving + verifiable computation for https://twitter.com/arpaofficial/status/2019782634071605662
·
--
Visualizza traduzione
Privacy is a core OG purpose of crypto It’s what lets crypto scale beyond speculation ARPA is building for that world 🌐 https://t.co/NcUnvizBF9 https://twitter.com/arpaofficial/status/2019567214073127316
Privacy is a core OG purpose of crypto

It’s what lets crypto scale beyond speculation

ARPA is building for that world 🌐 https://t.co/NcUnvizBF9 https://twitter.com/arpaofficial/status/2019567214073127316
·
--
Scalare il futuro del calcolo decentralizzato con @Eigenpiexyz_io! 🏗️🛡️ Mentre l'ARPA AVS si prepara per il suo prossimo round di aggiornamenti tecnici, siamo orgogliosi di avere Eigenpie come operatore dedicato. Insieme, stiamo rafforzando la sicurezza della rete ed esplorando sinergie più profonde. https://t.co/Dm4Pt3r1Ae https://twitter.com/arpaofficial/status/2019201303424221550
Scalare il futuro del calcolo decentralizzato con @Eigenpiexyz_io! 🏗️🛡️

Mentre l'ARPA AVS si prepara per il suo prossimo round di aggiornamenti tecnici, siamo orgogliosi di avere Eigenpie come operatore dedicato. Insieme, stiamo rafforzando la sicurezza della rete ed esplorando sinergie più profonde. https://t.co/Dm4Pt3r1Ae https://twitter.com/arpaofficial/status/2019201303424221550
·
--
Visualizza traduzione
In a trustless world, privacy and randomness must be provable. ARPA is building the math that makes Web3 honest. 🧮✨ https://t.co/xYbH3oUC17 https://t.co/vnBvOUplMO https://twitter.com/arpaofficial/status/2018847723085086735
In a trustless world, privacy and randomness must be provable.

ARPA is building the math that makes Web3 honest. 🧮✨

https://t.co/xYbH3oUC17 https://t.co/vnBvOUplMO https://twitter.com/arpaofficial/status/2018847723085086735
·
--
Visualizza traduzione
We’re excited to explore working with @TermMaxFi - a DeFi protocol bringing fixed rates and term structures on-chain for RWA. 🤝 Together, we’re looking at ways ARPA can help enhance security, trust, and innovation across leveraged DeFi. Unlocking opportunities for a stronger https://t.co/bLUepbPddC https://twitter.com/arpaofficial/status/2018504461493186853
We’re excited to explore working with @TermMaxFi - a DeFi protocol bringing fixed rates and term structures on-chain for RWA. 🤝

Together, we’re looking at ways ARPA can help enhance security, trust, and innovation across leveraged DeFi.

Unlocking opportunities for a stronger https://t.co/bLUepbPddC https://twitter.com/arpaofficial/status/2018504461493186853
·
--
Visualizza traduzione
Privacy without verification is secrecy Verification without privacy is surveillance ARPA builds the balance. ⚖️ https://t.co/Krsu2IVmUh https://twitter.com/arpaofficial/status/2018113887564923298
Privacy without verification is secrecy

Verification without privacy is surveillance

ARPA builds the balance. ⚖️ https://t.co/Krsu2IVmUh https://twitter.com/arpaofficial/status/2018113887564923298
·
--
La fortuna è divertente ma la fortuna dimostrabile è equa È per questo che i giochi Web3, i progetti NFT e le dApp scelgono ARPA Randcast 🎲 https://t.co/xYbH3oV9QF https://t.co/un2A11ffhj https://twitter.com/arpaofficial/status/2017025969308258529
La fortuna è divertente ma la fortuna dimostrabile è equa

È per questo che i giochi Web3, i progetti NFT e le dApp scelgono ARPA Randcast 🎲

https://t.co/xYbH3oV9QF https://t.co/un2A11ffhj https://twitter.com/arpaofficial/status/2017025969308258529
·
--
Visualizza traduzione
RT @cedranetwork: Cedra × @arpaofficial Cedra is partnering with ARPA Network, a decentralized secure computation protocol focused on imp… https://twitter.com/arpaofficial/status/2017021829458907212
RT @cedranetwork: Cedra × @arpaofficial

Cedra is partnering with ARPA Network, a decentralized secure computation protocol focused on imp… https://twitter.com/arpaofficial/status/2017021829458907212
·
--
Visualizza traduzione
Privacy within open networks is not an oxymoron In fact one begets the other https://t.co/PTpSlgWV8K https://twitter.com/arpaofficial/status/2016665846001913957
Privacy within open networks is not an oxymoron

In fact one begets the other https://t.co/PTpSlgWV8K https://twitter.com/arpaofficial/status/2016665846001913957
·
--
Aggiornamento sulla partnership: ARPA × @cedranetwork 🚀 Siamo entusiasti di collaborare con Cedra - una rete Move veloce, aperta e governata dalla comunità. Insieme, stiamo esplorando l'opportunità di portare ARPA Randcast nella rete Cedra. Fornendo casualità sicura per giochi, DeFi, NFT e app on-chain su https://t.co/GQ2CEG0R89 https://twitter.com/arpaofficial/status/2016692778613494061
Aggiornamento sulla partnership: ARPA × @cedranetwork 🚀

Siamo entusiasti di collaborare con Cedra - una rete Move veloce, aperta e governata dalla comunità. Insieme, stiamo esplorando l'opportunità di portare ARPA Randcast nella rete Cedra.

Fornendo casualità sicura per giochi, DeFi, NFT e app on-chain su https://t.co/GQ2CEG0R89 https://twitter.com/arpaofficial/status/2016692778613494061
·
--
Siamo felici di continuare a lavorare con @InfStones, un operatore fidato che supporta ARPA AVS. Mentre ARPA AVS attua i prossimi aggiornamenti tecnici, @InfStones continuerà a fornire infrastrutture sicure e affidabili mentre cerca opportunità di collaborazione più profonde. Insieme siamo https://t.co/UUsBb4iLT8 https://twitter.com/arpaofficial/status/2016326922633150667
Siamo felici di continuare a lavorare con @InfStones, un operatore fidato che supporta ARPA AVS.

Mentre ARPA AVS attua i prossimi aggiornamenti tecnici, @InfStones continuerà a fornire infrastrutture sicure e affidabili mentre cerca opportunità di collaborazione più profonde.

Insieme siamo https://t.co/UUsBb4iLT8 https://twitter.com/arpaofficial/status/2016326922633150667
·
--
È scioccante quanto sia pervasivo il RNG in qualsiasi applicazione digitale Assicurati che la tua casualità sia veramente casuale https://t.co/xYbH3oUC17 https://t.co/17r818fZol https://twitter.com/arpaofficial/status/2016303710029095208
È scioccante quanto sia pervasivo il RNG in qualsiasi applicazione digitale

Assicurati che la tua casualità sia veramente casuale

https://t.co/xYbH3oUC17 https://t.co/17r818fZol https://twitter.com/arpaofficial/status/2016303710029095208
·
--
I tuoi dati non dovrebbero essere il costo dell'intelligenza.] L'IA verificabile e rispettosa della privacy su cui ARPA sta lavorando garantisce che tu rimanga intelligente e sovrano. 🛡️ https://t.co/IdsFn8itxm https://twitter.com/arpaofficial/status/2015939812084351323
I tuoi dati non dovrebbero essere il costo dell'intelligenza.]

L'IA verificabile e rispettosa della privacy su cui ARPA sta lavorando garantisce che tu rimanga intelligente e sovrano. 🛡️ https://t.co/IdsFn8itxm https://twitter.com/arpaofficial/status/2015939812084351323
·
--
Zero-Knowledge Proofs incontrano il Machine Learning. Il risultato è un'IA che sa senza mostrare. 🧠💡 https://t.co/15hsywZy82 https://twitter.com/arpaofficial/status/2015562576264925261
Zero-Knowledge Proofs incontrano il Machine Learning.

Il risultato è un'IA che sa senza mostrare. 🧠💡 https://t.co/15hsywZy82 https://twitter.com/arpaofficial/status/2015562576264925261
·
--
"Perché la privacy è essenziale per la maggior parte dei casi d'uso nel mondo reale, un pugno di catene di privacy potrebbe possedere la maggior parte delle criptovalute." - Da @a16zcrypto https://t.co/Sc39aaZVbz https://twitter.com/arpaofficial/status/2014854410195587229
"Perché la privacy è essenziale per la maggior parte dei casi d'uso nel mondo reale, un pugno di catene di privacy potrebbe possedere la maggior parte delle criptovalute."

- Da @a16zcrypto https://t.co/Sc39aaZVbz https://twitter.com/arpaofficial/status/2014854410195587229
·
--
La tecnologia ZK è stata nella mente dei crittografi sin dall'ascesa della blockchain 🌐 La ricerca di ARPA in quest'area è rimasta costante 😎 Come esempio, dai un'occhiata alla nostra ultima ricerca su ZKP per la modellazione AI https://t.co/UofUFaLiid https://t.co/hRIh54xLr4 https://twitter.com/arpaofficial/status/2014473152881926601
La tecnologia ZK è stata nella mente dei crittografi sin dall'ascesa della blockchain 🌐

La ricerca di ARPA in quest'area è rimasta costante 😎

Come esempio, dai un'occhiata alla nostra ultima ricerca su ZKP per la modellazione AI
https://t.co/UofUFaLiid https://t.co/hRIh54xLr4 https://twitter.com/arpaofficial/status/2014473152881926601
Accedi per esplorare altri contenuti
Esplora le ultime notizie sulle crypto
⚡️ Partecipa alle ultime discussioni sulle crypto
💬 Interagisci con i tuoi creator preferiti
👍 Goditi i contenuti che ti interessano
Email / numero di telefono
Mappa del sito
Preferenze sui cookie
T&C della piattaforma